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1. INTRODUCTION

It is well known that the Kolmogorov-Smirnov (KS) statistic,
based on a sample from any univariate random variable with continuous
distribution function (d.f;), is distfibution free. It is also well
known that in the multivariate situation this is not the case, and
it is to this situation that we shall soon direct our efforts. 1In
the beginning, however, Kolmogorov (1933) showed that the one-sided
statistic, Tn = sup{vngh(x) ~ F(x)): xeRl}, where F denotes the

underlying d.f. and Fh the empirical d.f., satisfies

=212
(1.1) P{Th >A}l > e 22 Vi, as n + ® ,

Smirnov (1944) extended this result to the two-sample problem,
Feller (1948) gave it a neater proof, and Doob (1949) followed by
Donsker (1951, 52) and the theory of weak convergence explained it

in terms of the convergence of VEth-F) to a limiting Gaussian process

whose maximum had the tail distribution exp(-le).
In the multivariate case, there is no simple analogue to (1.1),

and the best one can hope to obtain is either a iimiting distribution

for sore specific F, or bounds'that may be valid for a family of
F's sharing, perhaps, some regularity properties. The first attack
on this problem was made by Kiefer and Wolfowitz (1958), who showed

(k)

that 1f Tn is the one-sided KS statistic in k dimensions, then

for some a = a(k) >0 and c=c(k) <= ,




a2

(1.2) P{Tik) > A} < ce ¥n, A, F.

Despite the fact that this bound is obviously very crude, it did at

least suffice to prove the existence of a limiting distribution for
200
n

a8 n + o , (The full weak convergence of the empirical d.f.
to an appropriate limiting Gaussian random field was later established
by Dudley (1966, 67).) However, although Kiefer and Wolfowitz esta-
blished the existence of this limiting distribution, no explicit form P. ': ;
for it is known. Indeed, there is only one non-trivial case where
reasonably accurate bounds are known, this being the case where F
is wniform on the unit square; Here the limiting distribution of .0

_ VGZFA-F) is that of a pinned Brownian sheet, and fairly close lower   {{ =
and upper bounds on the distribution of its maximum appear in Goodman -
(19765 and Cabana and Wschebor (1982), respectively. We shall have more
to say on this later, Qhen Goodman's lerr bound is extended to arbi-
trary dimensions.

In a ciassic paper, Kiefer (1961) greatly improved on (1.2)

and showed that for all € > 0 there is a ¢ = c(k,e) such that

w3 pr 5 ) <@V

This is a particularly interesting bound Asince, viewed as a result

on the maximum of the limiting Gaussian field, rather than as a

result on T(k)

n itself, 1t is one of the few fore-runners of the

general inequality for continuous Gaussian processes, X(t), that
states that for all sufficiently large A

(1.4) P{sup X(t) > A} j_e-aAZ , Vac (202)-1 ’
t
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vhere 02 = sﬁp(var X(t)}. (Ferique (1970, 71), Landau and Shepp
(1971), Marcu: and Shepp (1971).) Note that since s:ﬁfvar[ngFh(x)-Han]}v 1/4,
Kiefer's bound 1is, today, a simple consequence of (1.4) and weak conver-~
gence. Nevertheless, in its time, Kiefer's result was of substantial
interest, since it was, to the best of our knowledge, the first time
that a uniform bound was placed on the maxima of a large family of
Gaussian processes. (The statistical significance of such a lower
bound is that it permits construction of “confidence intervals" for an
unknown F.) Furthermore, Kiefer exploited (1.3) to prove a law of the
iterated logarithm (LIL) for the multivariate KS statistic.

The main thrust of the current work will be to further refine
(1.3), in two directions, and then to 1n;estigate the consequences
of the refinement. For a start, we shall show (Section 4) that (1.3)

can be replaced by: There is a ¢ = ¢(k) such that

- 712
(1.5) P{TS‘) > A} < 2D 2 L F

This, as with Kiefer's result, is of interest beyond the KS situation,
since, in the Gaussian process setting, it provides a family of pro-
cesses for which (1.4) cen be improved upon. Howeaver, we can do better
than just (1.5), and we shall also show that as long as F satisfies

mild regularity conditions, there is a ¢ = c(F) such that

e a5y 2D

The upper and lower bound together enable us to improve on Kiefer's

LIL, and to obtain an exact upper-lower class result in its place

(Section 5).

B R N LN
. St
, Sk,




.................

PR 1}

.,

T

......

An upper bound similar in spirit to (1.5) has recently been obtained
by Alexander (1983). Treating a more general situation of empirical
measures, V., indexed by a Vapnik -Cervonenkis class of functions, F say,

he showed that

12 _932
P{sup‘vn(f)[ > A} j_lGsza e_-21 » ¥A>8,
fefF

where v is a strictly positive integer describing the "size" of F.
Alexander's result, while clearly being an improvement on (1.3),
also gives, for the cases we consider, an enormous over-estimate of
the power of A in the upper bound.

Unlikg Alexander, however, we shall.have little to say about the

sizes of the constants in our bounds, other than to guarantee their

finiteness. Thus, from the point of view of actually applying the

KS statistic in a statistical setting, these results are of limited
interest. We shall remedy this situation in Section 3, where, for the
two-dimensional case, we shall develop an explicit, sharp, upper bound,
and a reasonable lower bound. The various applications of these results
are spelled out in detail in Brown and Adler (1984). The argument

leading to the upper bound is rather interesting, since it is based

on finding the worst possible F (a task actually performed by

Kiefer) and comparing it, via Slepian's (1962) inequality, to all other

cases, The distribution of the maximum in the worst possible case is ;
what then provides the bound. In fact, this methodology of "comparison" iﬁ?i;f;i
will also be used to obtain the lower bound (1.6), and may, in a cerﬁain RO :
sense, be considered the main methodological theme of this paper.

The following section is devoted to peripheral and support

material There we obtain lower bounds for the distribution of the maximum
of the pinned Brownian sheet in;k—dimensions, and some related distributionms. - é: '

While these do have some intrinsic interest, our main interest in them
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will arise from thelr usefulness as "comparison distributions". We
close this section with notation and some background results.

Let X,. X2. »+sy be independent random variables with 4.f.

F(x), which we assume to be continuous, and which can therefore, ~

) w.l.0.8., be taken to be concentrated on the unit cube Ik = [0,]_]k . ‘
of Rk with univariate marginals wniform on [0,1] . We denote a o
point in Ik by either x or (xl, ceey xk)‘ and introduce the _ ‘

usual partial order.

k
X<y = x <Y, i=1,...,k , X,yel .

k 4

For x <y we write [x,y] for the set = [xi,yi], and use ol
BN U5 | Lo

1,(-) for the indicator function of the set ACT® . Thus we can R

formally introduce the empirical d.f. Fn as

ol
(r.7) ' Fn(x). n 1211[0,x](x1) .

Let WF be the pinned Brovnian sheet based on F; i.e., the zero

mean Gaussian rrocess with covariance function

(1.8) RF(x,y) - E{WF(x)WF(y)} = F(xay) - F(x)F(y), x,y¢ *

vhere xAy 1s the coordinatewise minimum (xlAyl, seey xknyk) .
Then, as is well known, (k=1, Donsker (1952); k>1, Dudley

(1966, 67)), /tT(Fn-F) converges weakly to W_ 4in the space of all

F
bounded functions on Ik. Thus, in particular, if

(1.9) 'r: - T::(F): = sup{/a(E_(x) - F(x)): xI¥}

is the one-sided KS statistic, then




> .Y . - - . - - - - . .
DN P o e e L

: . k
(1.10) 'r::(r) -l‘ M = sup{WF(X)= x€I'} asn =+,

This last result provides the obvious motivation for the next
two sections, both of which are concemed with the distribution of
MF . In fact, one can go beyond the central limit result (1.9)
to a much stronger embedding type result. However, since we shall
not need this result until Section 5, we shall introduce it only

then.
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2. TWO SPECIAL CASES

We consider firstly the distribution of M‘F when F is the

i uniform distribution, U say, on Ik . We shall, however, require a

slightly more general result later, and to this end let w(k) denote

the (unpinned) Brownian sheet on Ik, i.e., the zero mean Gaussian

E process with covariance function
8 ),y ) , k
L EW W T(n) = T (xAy), xyeR, ,

. i1 + :
i=1 :
Lﬁ and write g(k) for the pinned version of W(k) on Ik. Then a *’ -

version of . 81 can be obtained from W by the correspondence
0
2.0 30w = w®w - x® xel

where ' x I = TX . In the general. notation of the previous section
i=1 '

‘ol(k)s WU « The result we shall need is

Theorem 2.1

' k-1
2.2)  Plovpw® ) > AP @) = w} > e O 2GR (D,

Ik n=0 :::'i

C

a.s., for all A > w. Furthermore, the case w = 0 yields 3 \

e

0 g2kl 2
JN 2. e ¥ > a2 e r @)%/ . R
s 1k 0%0 ]
When k=1 (2.2) follows immediately from the reflection principle ~,

o

(Feller (1971)). When k=2, (2.3) is given explicitly in Goodmen (1976), ]

and (2.2) 1is also there implicitly. Cabana and Wgchebor (1982) and .

Park and Skoug (1978) also have (2.2) in the two dimensional case, and . :;,':j:

: Sl




shortly after obtaining the above result for general k, we received
a copy of Cabana (1982) which states the same result with a virtually
idehtical, albeit more detailed, proof. However, since Cabana's

paper is not readily available, as well as for the sake of complete-

ness, we shall give a brief proof of the theorem.

Proof. The proof proceeds by induction. As noted above, (2.2) is
known to be true when k=1 and k=2. Now write ak(A,w) for the

conditional probability on the left in (2.2), and define

o (k).
@4 b O = Pls u)—'l]> wl.
U |«

Then, after some calculation, it readily follows from (2.1) that

ak(l,w) = hk(k,-w). If we now follow the formulation of Goodman (1976)
of treating the (k+l)-parameter, real'dalued, W(x) as a Co[O,l]k
valued, single parameter process, then by applying Goodman's Theorem 2
‘and mimicking his manipulations on page 980, it is straightforward to

establish the relation
0 =2A(w-u)
80w 2 { (1-e )b (A, du)

Exploiting the above relationship between 8 and hk thus yields
a recurrence formula for a4 and it is now a matter of elementary
calculus to check the induction hypothesis and so complete the proof.
Tﬂe second result which, unlike Theorem 2.1, is of little inde-
pendent interest, will be extremely useful for us later. To state
it, we introduce, for eachee(0,%), the d.f. F.(x) =.Fe(x1,....xk)

defined by

s

o

. - f
BTN
e T Ty
SRR
o '1
PRSI |
B )
.
- .- -
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9
min(xi) if |min(x1)—%| > e,
i i
2.5) F (x) =
k1
L - e + (2¢) e [(xi—%+e)A28] otherwise.
i=]1

Despite its somewhat forbidding appearance, Fe is a rather simple
d.f., distributing total probability 2¢ uniformly on the cube

Ae: = [k, &+e]k, with the remaining probability of 1-2¢ distributed
uniformly on that part of the main diagonal of Ik disjoint from Ae'

Now let we(u,v) denote the two-dimensional normal density

with zero means and covariance matrix Ee defined by

(2.6) Lz = [ Cre)lste) (s-¢)2
(s-c) 2 (%s-€) Gste)

Furthermore, let ge be the matrix identical to Ee » but with the
sign of the off-diagonal entries reversed, and let we be the two-

dimensional normal density with zero mean and covariance matrix 28 .

For each positive ¢ and ), and integral k, set

@n 4 M=

2eX 2e (k-1 n -
[ I [(u-2€X)(v-2€X)/e] /n! we(u,v)dudv,
n=0

and write Qe(l) for the normal quadrant integral

2.8) Q, (M:=1- [ f)‘we(u,v)dudv .

We cdan now state

I P U PSP
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Theorem 2.2. For every A >0 .

> 21 > -2)2
.9) P{sup W (x) Qe (N +e’ wk E:_(A) . e
Ik € ’ _.
In particular, there is a finite c¢ = c(€,k) such that for all A >0 ";.::‘.';‘
3 . . :
J .. ] _ -2)2 !
b (2.10) Plsup W_ (x) > A} > clz(k 1)e 2

Proof. We shall obtain only a lower bound for P{sup(wF (x):xeA)> A},

L € T
k which, a fortiori, will provide the lower bound required. Let a. and b, RIS
be the two extreme corners of A, le., a = (Gs€yeney %€) , :' ":
N ’ 4
J be = (3te,..eokte) . Then define the process Z(x) on Ik by
)
. - —k - pr— - : ;7‘

Z(x): = (2¢) WFe(ae+2€x) Q lx[)ch(ae) lx!er(be)}

Then it is straightforward to check that 2(x) is a standard pinned
sheet on Ik » a8 in (2.1). Consequently, for (u,v) < A, it follows _.4“_4
that _ ".-_-f._::_f.::j
(2.11) P{sup W (x) > | W (a ) = u, WF (b)) = v} :}-ﬁ'ﬁ-'.j-:::.
A¢ Fe € I
509 (x) =~ (-w)/7Fe , | u-v * -
- P{sup( ) 2 } 1
* | x| 2¢ el
....-- ‘
But ttis is precisely the probability defined at (2.4). Thus, using . -

the equivalence noted there between this probability and a.» we

can bound it by Theorem 2.1. Using this bound, (2.11), and the fact

' PR AN
oy P P

. L et .

. P .
Wl ..

that the joint density of <WF (ae), “F (bc)> is given by V_
€ €

we obtain




(2.12)  Plsup W, (x) > A} > Plu_ (a,) > 1 or We (b)) > A} +
, 2 : |

F
1k € - z
A A =(A-t) (A-v) Je 5L n e
(MAe™ : L [(A-u) A-v) /e]*/n1 ¥ (u,v)dudv . o
-—eD  en00 n=0 '~ -.
. o
Consider the integrand, and make the transformations x=u-A(1l-2%),
y=v-A(1-2e). Tedious but straightforward algebra yields that it is
equivalent to : °
924 1-1
e Gy T [(x-2e)) (=260 /e TP /mt
n=0
Substituting this into (2.12), changing the bounds on the integral, - 0.
" and replacing the rightmost probability by Qe(k) now yields (2.9), }‘}15
as required. S
To obtain (2.10) from (2.9) simply take A large enough so that - _".‘7 T
the dominant term in the sum in ¢€ K is O(Az(k—l)) . Then choose
- ]

an appropriate c¢ to make (2.10) work. This completes the proof.

In what follows wé shall be primarily interested in the asymptotic TR
lower bound (2.10), which will be used to prove results of theoretical kf;*
interest. The explicit expression (2.9) has, however, some practical 5'f1

o

* value for statistical hypothesis testing, and this is discussed in T
.

Brown and Adler (1984), where the bound is actually tabulated for a

i nurber of cases.
In general, we shall use Theorem 2.2 to form a basis for comparison

between the maxima of pinned sheets based on different d.f.s. The

crucial result that underlies all these comparisons 1s a basic result Sl

of Slepian (1962), which we record here as




lemma 2.1 (Slépian's inequality). lLet X and Y be two zero mean

Caussian processes defined over some set T. If wvar X(t) = var Y(t),

VteT, and

(2.13) cov(X(t), X(8)) < cov(¥(t),Y(s)) Vs, teT .
then

(2.14)  P{sup X(t) > A} > P{sup Y(t) > A} WA,
T T

Note that Slepian's inequality does not extend to comparisons of
[sup Xl and lsup YI, and so the sharp results of the following section
are not easily extendable to the two-sided KS statistic. Nevertheless,

we can always use the fact that for symmetric processes

(2.15) P{sup X > A} < P{sup [X| > A} < 2P{sup X > A}

to obtain bounds for the two-sided case. For the bounds of section 4,
in which constants are not identified, this is clearly sufficient.

We now consider, as an example of our "comparison methodology"

the two-dimensional case.

|

4
L
i
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3. THE TWO-DIMENSIONAL CASE. -
Throughout this section, we shall denote points in I2 by i
(x,y), and F will denote a continuous d.f. on I, possessing uniform -;4._.

marginals. The degenerate distribution, uniform on the negative

slope diagonal x+y=1 will be denoted by G(x,y); i.e.,

+ 2 | )

3.1 6(x,y) = (xty=1) ", (x,y)el” . ~® .

.Et: Our aim in this section will be to devise good (non-asymptotic) i
k bounds for P{sup Wy > A}. We start with '-"-4'544441

- .r.¢ -
.

Theorem 3.1 For any two-dimensional d.f. F satisfying the sbove

conditions, and for any A > 0

(3.2) P{sup Wo(x) > A} < P{sup HG(x) > A} .
2 2

‘ 1 1

Furthermore

® I
(3.3 Ploup Wy(x) > A} < 1 (sa2a2-2)e BN

12 n=1

Proof. Let m be the mapping from I2 into Iz defined by

(3.4 6@mx) = 6w ), n, () = Fx), v xe1?

(3.5) mz(x) - ml(x) =% -x Vxe 12 .

We must check that m is well defined. For given x, note that m(x)




lies on the line & : = (x +u,x, + 1), ueR, and G(x; + uyx, + 1)
is clearly non-decreasing in ¥ . Indeed, (3.1) and a little elementary

geometry show that G(xl + H,xz + 1) is strictly increasing for

(3.6) k(l—xl-xz) < 11 <1- (x1 v x2) '

When u = k(l-xl—xz), then G(x1+ﬁ,x2+u) =0 < F(x). When u = 1—(xl v xz),

then G(x1+u, x2+y) = ] - I.xl - le. Suppose, w.l.0.g., that x, > X,.
Then (xl + u,%, + ) = (1, %, + (l—xl)). Applying these facts,
together with the uniformity of the marginals of F and the natural

monotinicity of F , we obtain ' .o

G(xy + wyxy + 1) = F(l,x, + (1-x,)) > F(x) .

[}
v . .- - . P .
PRSIV ELY Gl WA NI

Thus, within the range (3.6) there is, by the continuity and strict

monotonicity of G, exactly one u satisfying G(xl + u,x, + w) = F(x) .

2
Hence the map m 1is well defined.

Now consider the processes W_ and WG +» We shall compare

F
sup{WF(x) sxeI? ) to sup{wc(x): xem(Iz)} < sup{wG(x): erz}. Note

firstly that for xe12

(3.7 var WF(x) = var W.(u(x)) ,

a simple consequence of (3.4) and (1.8). Consider

(3.8) cov(wF(x)_, WF(y)) = F(xay) - F(x)F(y) .

Suppose xay = x. Then
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F(:-my) = F(x) = G(m(x)) 2> G(m(x)am(y))

Thus, in this case (as in the analogous case xay = y)

(3.9) cov (W (x) .WF(Y)) 2 cov(W (m(x)),W.(m(y))).

1f we can also establish (3.9) in general, then we shall have completed
the proof of the first part of the theorem, viz. (3.2), since (3.7)
and (3.9) are precisely the ingredients for Slepian's inequality.

Thus, consider (3.8) fcr x,y with x> v, and X< Yy o (The
remaining case is handled analogously.) Then xay = (yl,xz). Write
W= (ml(y), mz(x)). Th.ere are three poss_ible cases to consider:

n(x) >w > m(y), m(y) > w > m(x), w = m(x) an(y) . We shall consider

only the third case explicitly, but the reasoning is valid for all the

cases. Note (drawinga picture helps to see the inequalities) that

F(xay) = Fy;,x,)
> [F(x) - (xl-ylﬁ v [F(y) - (yz-xz)] by marginal wniformity
2> L{F(x) + F(y) - [(x=x,) -(y;-3,)]}

= 5{6(m(x) + 6(u(y)) - [(my (x)-my(x))-(m, (5)-m, ()]}
by (3-4)' (3.5)

2my(x) +my) - 1. by (3.1).

Hence, if mz(x) + ml(y) = 1> 0 then the above yields

(3.10) F(xay) > G(ml(y).mz(x)) .
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On the other hand, 1f m,(x) +m(y) -1 <0, then G(m (y), m,(x)) =0

and so (3.10) is trivially true. Thus, in general,
F(xay) 2 G(ml(y). mz(x)) = G(w) = G(m(x)am(y)) .

From this we immediately obtain (3.9) and the proof of (3.2).
It remains to establish the inequality (3.3). To this end, let

!?!(t), te [0,1], be a standard Brownian bridge with covariance function

(3.11)  E{N()T(s)} = (sat) - st .

Define the two-parameter field X om 12 by

o o
W(xl) - W(l-xz) x1+x2 -1>0

X(xl.xz) =

Then comparison of rovariance functions ghows that X 1is a version

of WG . Thus

(3.12)  P{supW (x ,x,) > A} = P{euwp[WCx>R(1x,): x+x, - 1 > 0] > A}
. G *1°%2 upLILxY 27 175 2

= P{sup[%(s) - %(t): s>t] > A}
< piewpllits) - Fe): s, te[0,11] 5> A}

< P{Lsmp@sN™® + supB(e)) 7] > 1)
[0,1] [0,1]

But the last probability is known exactly, having been determined in
Kac, Kiefer and Wolfowitz (1955, equation (4.6)), and is precisely the

sum given on the right of (3.3), and so we are finished.
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Remark. Note that the two inequalities following (3.12) are far from
sharp, and a little reflection shows that each inequality, while
retaining a bound of the right order of magnitude, "costs", roughly,
a factor of two, 1.e., we expect that the final upper bound is too
large by a factor of four. Indeed, comparison of the general upper
bound (3.3) with the specific lower bound in the uniform case, (2.3)
E with k=2, shows, for large A, a difference between the bounds of
precisely a factor of four. Clearly, a much better upper bound than
(3.3) is given by P{sup[f(s) - f(t): 0 <t <s <1] >}, (c.f.
(3.12)), but this seems hard fo calculete. However, numerical estimates
of this probability are easy to obtain v}a simulation, and some are
listed in Brown and Adler (1984). Furthermore, calculation of (3.3)
and éomparison with (2.3) for moderatg A, say Ae[1,3],
yields that (3.3) overestimates the trﬁe probability by less than
a factor of four, and that the KS test statistics derivable from
E _ (3.3) are in fact quite useful. For details see Brown and Adler (1984).
' We now turn to the more difficult problem of finding a uniform
:f lower bound for the two-dimensional case. Here we shall need to
i impose assumptions on F in order to avoid degeneracies. (e.g.,
: F concentrated on the diagonal xl-x2 s which reduces to the one-
dimensional case.) Let ||x|| = |x1| + lle denote the "city block"

norm of X. Then we shall prove

Theorem 3.2 let F be a d.f. on 12 » with uniform marginals, such

that there exists an xoelz » a neighbourhood N of X, and a

constant 8¢ (0,1] satisfying

........
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(3.13) F(x) =%

md .

(3.14) 1f x,yeN and either xl-yl,"_ol %"y, then lF(x)-F(y)l
> 8| |x-yl|.

Then there exists a finite ¢ = ¢(F) > 0 such that

(3.15)  Plowpl(x) > A} > eaZe 2V,
Remarks. Theorem 3.2, as it stands, is a special case of the more general
result Theorem 4.2. What makes it of special interest, however, is
the fact that in two dimensions it is possible to obtain estimates for
c. We shall discuss th.ese at the end of_the proof. Furthermore, the
two dimensional case turns out to be somewhat simpler than its higher
dimensional analogue, thereby making its proof more transparent and
interesting.

It is clear that the conditions of Theorem 3.2 hold if F has
a density bounded away from zero. However, absolute continuity is not
a requisite of the theorem, and it is easy to build examples of non-absolutely
continuous F satisfying (3.13) and (3.14). A trivial example is the
extremal case, (3.1).

Proof of Theorem 3.2. The aim of the proof will be to compare W

F

with W_ , where Fe is the distribution function (2.5) of the

F
€

preceding section, and then use Slepian's inequality and Theorem 2.2

to complete the argument. The comparison will only be possible over

a region in the neighbourhood of (%,% 1n the domain of WF sy together
with a subgset of N in the domain of WF » but it will tum out:

that such a comparison will guffice for our purposes. We start by




building a mapping between the above two neighbourhoods, and by
noting that the reader's path through the forthcoming algebra will
be considerably simpler if he follows the argument graphically with
pen and p;per.

For xeR , let X be the projection of x on the diagonal

{x: x1=x2} , 1.e., x has both coordinates equal to k(xl-l-xz). Define
(3.16) d = d(N): = 1nf{Hx-x°“, x ¢N}.
Let ¢ = dB/3 and define amap m from A_ into N satisfying

(3.17) n(y) - da(y) = xo-io + (y-v) /8.

and

(3.18) Fe(y) = F(m(y)) ,

where I-‘e is defined at (2.5). It is necessary to demonstrate that
this map is well defined and one-one.

To this end, fix yeA, and let o, = x, + (y-—§)/8 . Also,
let m, = m, + u(l,l), for real u. Now note that, by (3.14), F(mu)
is strictly increasing in ¥ as long as mueN. Furthermore, 1f
u = ¢/8, then o, 2 x, » since (y-i;)1 <€ for yeA . Similarly,

u = —¢/8 implies m < X, . Consequently

(3.19) F(m_. jg) 2% < F(m_,0) -

Now consider for what values of u we shall have mueN .
Clearly (mu)1 - (xo)i < e/ + u, 11,2, since ye€A_ . Hence muEN '_:'..}"-"’ ’
for |u| < 2e/8. Now take wu>wu', with |u|v|u'| < 2¢/8 . Then, by
(3.14),

F(mu) - F(mu') > B(u?u') .
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But now it follows that there is a unique " ue[-2¢/B,2¢/8] such that

-. F(mu') - Fe(y)’ since yeAe implies X-€ < Fe(y) <l +e. Let
1 n(y) = n for this u. Then clearly (3.18) 1is satisfied, as is (3.17),
: 80 that m is well defined for each ‘yeAe . Furthermore, the above
l ) argument also establishes that m is one-one. This completes the
f first part of the argument.
) Let m(Ae) be the image of A, under the mapping m, and
.! consider wF(x) for xem(A ). Clearly, for yeAs, (3.18) and (1.8)
- imply
(3.20)  E(Wi(m(y))} = E(WZ (N} .
3
Now take y1<y2, yl,yzeAe. Then Fs(yl) <Fe(y2) and so
F(m(yl)) < F(n(y,)) . Thus (1.8) iumediately yields
i (3.21)  E{W (n(y,) )w.F(m(yz))} = F(m(y,) sn(y,)) - F(m(y,))F(unly,))
! . 2 F(u(y;))aF(m(y,)) - Fn(y,;))F(m(y,))
I | | = Fe(y)) = F(9)F(5,)

By symmetry, (3.21) also holds for Y1 > Yy o Now suppose Y3"Y14Y, is

M B LR

distinct from both Y1 and v, - Set x1=m(y1), i=1,2, and

\ . xa-xlez . Observe, either geometrically or algebraically, that

)

: (3.22)  lyyysll + [ly,y,5ll = 19 =(5,-9)I1 .
Thus, since Fe has uniform marginals, and yieAe,

]

-
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(3.23)  Felyy) + Fe(y,) - 2Fe(y,)
(et e)(llyl-y3ll + Hyz—y:;”)
= 05+ o ll-5) - 0,73, -

Now suppose that x, kd X;. We shall show that this is impossible.

Write x, =((x1)1, (x2)2) . Then, by geometry and ascumption (3.14)

F(x,)) - F(x,) = F(x,) - F(x,) + F(x,) - F(x;)
2 801 x| + lx,x, |1}
28l Gxyxp) - (x|
= [lty,mvp) = G-Il

the last line following from (3.17). The above and (3.23) now yield

0 <F(x) - F(x) = F (y) -F &y e
= Fe(yz) * Fe:(yl) - ZFe(y3) RO

2 G+ ) {F(x)) - FGxp} RS

which, since € <%, 1s clearly untenable. Thus we cannot have x, 2% .ti".:_:ij}-'.“,-.t':'

nor, by symmetry, x; > x,. Consequently, X, = .ax, is distinct P

from both X and X, o Then, again by geometry, assumption, and

(3.22), we have

F(xy) + F(x)) = 2F(X)) > 8] lxmxy | [+ [x,=x, | |} .‘.-_,°.- :_
= 8L} G %) = (x,~%,) [} ey
= 17,5 - 79 )1 - .
= [lyy=3; 11 + Tyy=3,11 e 3

lv

-
(gte) {Fe(y1)+Fe(y2)—2Fs(y3)}

> I"e ('y1)+Fe (yz) -2 Fe (y3) .
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Thus, since F(xi) = Fe(}’i)s i'lpzsj

2 F (y5) = F(m(yy)) > F(x,) .

From this it immediately follows that for all yl,y2 € Ae
By Oy (7)) 2 By (aly)ig(aty,)) 3

with strict inequality if X A%, # X i=1,2., But this is all we

need, for by Slepian's inequality,

P{sup WF(x) > A7 > P{sup WF(X) > A}

> P{sup Wo (x) > Ak

A €
€

The last probability is precisely that given by the RHS of (2.9),
which, as we have already noted, is asymptotically of the form
ckze—-z}‘2 . This completes the proof of the theorem.

We close this section with two remarks. The first on the constant

¢ of Theorem 3.2 , or, to be more precise, on an exact lower bound for

P{sup WF(x) > A}. It is clear from the argument that such a bound

is given by Qeo‘) + zpz’e(x), with ¢ = dg/3 . (c.f. (2.7), (2.8),
(3.16).) 1If we consider the case of F uniform, the optimal choice
of @8, so as to maximise €, is d = B8 = 1/(2/2), yielding ¢ * 0.04.
F This is, of course, much smaller then the ¢ = % that a sharp argument

would give. Nevertheless, the numerical consequences of this lack

of sharpness are not quite as bad as one might imagine. For details,

see Brown and Adler (1984).
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It is interesting to note that there are "1%-dimensional d.f.'s
that yield supremum tail probabilities strictly between the one-
232 =222
dimensional 0(e 22 ) and two-dimensional o(kze 2 ). As an example,

take H to be the d.f. on 12 with density

(3.24) h(x,y) = } 2 (x,y) < CGs,%) or (x,y) > (5,%)

0 otherwise.
Clearly, H fails to satisfy the conditions of Theorem 3.2. However,
it is a relatively easy exercise to estimate the exceedence probabilities

of WH’ using the fact that the two processes

Wl(x,y): = VE{WH(X/Z, y/2) - WH(%.%)}

W, () = 200, (-x/2, 1-x/2) - Wls))

@

. s ]
(x,y)eI2 » are both versions of the pinned Brownian sheet W
This fact, together with Theorems 2.1 and 3.2, conditioning on and
then integrating out WH(%,%), readily yields

932
(3.25) P{sxzzp Wy (x) > Al = 0(2e 22 )

I

thus indicating that non-even powers of A in tail bounds cannot be
excluded. (Indeed, there is no good reason even to exclude non-
integer powers, as these do occur as tail bounds for other classes
of Gaussian processes; see, for example, Section 12.2 of Leadbetter,

Lindgren and Rootzen (1983).)
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4. BOUNDS FOR THE GENERAL CASE ’
Our aim in this section will be to obtain, in k > 2 dimensions,
bounds of the same general form as those we have just obtained for -ikh
two dimensions. In particular, if F 1is a continuous d.f. ¢ Ik
- with wmniform (one-dimensional) marginals, then the two central results
b are as fellows: ._:l. .A
Theorem 4.1 There exist constants e k > 1, independent of F and A,
' such that for F as above IERERAS
b ) 0
. <1) =232
(4.1) P{supWF(x) >} < c.kkz(k l)e 23 . R
Theorem 4.2 Suppose, in addition to the above, there exists an xc’s:Ik . '.' -

a neighbourhood N of X and a constant ¢ > 0 satisfying

4.2) . F(x) =%,

(4.3) Thro.ughout N, F possesses continuous first order partial

derivatives yq: = 3F/3x:l satisfxihg

inf inf wi(x) =y >C.
i N

Then for each such F there exists a constant c¢ = c(F), independent

of A, such that

(4.4) P{sup WF(x) > A} > ch(k-l)e-sz.
k

I

‘Both of these results, while clearly indicating the correct order

of magnitude behaviour of the tall of sup wF » are considerably weaker
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than their two-dimensional counterparts, since the style of their
proofs will be such that it will be impossible to closely monitor
inequalities so as to estimate the constants of the bounds. Conse-

quently, the statistical value of Theorems 4.1 and 4.2 is somewhat

- limited. Nevertheless, they have interesting probabilistic conse-
quences, as we shall see in Section 5, as well as being of intrinsic

interest for the reasons mentioned in the introduction. o

We shall prove Theorem 4.1 first, by a method totally different
from that used for the two-dimensional upper bound. There, recall,
the argument was based on finding a "worst possible F"'. In dimensions e

three and above there seems to be no analogous unique worst F, and
the proof 18 forced to take a different route. We start with some
necessary lemmas, for which we define the following event for

eIk, X, <%, and A >0

X10%, 1<%

(4.5) A= ACx; 5%y, 00 = {sup(Wp(x): x; <x <x)) >},

Also, write

€4.6) o2(x): = var(WF(x)) = F(x)[1-F(.) ].
Lemma 4.1 Teke ¥ < a < ,~x1,xzeIk, X <x, and A >1. If

(4.7) a < F(xl) < F(xz) < l-a,

and
(4.8) F(x)) = F(x)) <% a2i?,

then

(4.9) P{A} < U()\-lexp(—Az/Zoz(xl)) ,

where, for any function £f: R + R,

f(a) < 0(a)<=>1lim sup (f(a)/a) <K <=,
oo
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Proof. Since it is generally difficult to work with the maxima of

the pinned sheet W, the main idea of the proof is to relate W_ to

F
its unpinned version, ZF’ where ZF is the zero mean Gaussian field

on Ik satisfying

E{Zp(x) - Zp(y)} = F(xay)

Then ZF(x) - F(x)ZF(l) is a version of WF » So that using this version

in all that follows, we can write .
(4.10) WF(x) = V(x) - [F(x) -rF(xl)]Z(l) x€[x1,x2]

where r'.
(4..11) | V(x) := W(xl) + [ZF(x) T ZF(xl)] . x€[x1,x2] .
The idea of the proof ’is that for A large. (4.8) implies the second term ::—_

in (4.10) will be small, while V(x) will be close to W(xl).

Note firstly, by direct calculation of covariances, that WF(x) and
_ [
Zp(1) are independent, so that with A as at (4.5) R
(4.12) P{A} = 2P{A and 2;(1) >0} . ﬁ'f
-.
Thus, by (4.10) S
(4.13)  P{A} < 2P(Z (1) > 0 and sup V(x) > A} o
[x,,x,] o
1°72 o
< 2P{ sup V(x) > A} :
[xl ’x2]
To bound the last probability, write V(x) = W(xl) + U(x)., where -’~_~_~
TN
- . '- '-‘\‘
Ux) := Zp(x) - Zp(x)) :335i

is independent of W(x,). Suppose we can show the existence of a finite —Q
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¢ > 0 such that for all n >0

21 -n232/q2
(4.14) P{ sup U(x) > n} < c(1 + nA/a) 1 g-n®A%/a .
[x;,x,]

Then, allowing ¢ to vary from line to line, and setting o2 = oz(xl)

for notational convenience, we have

A L.
P{A} < 2P{W(x1) > A} + SP{supU(x) > A - w}dP{W(xl)s w} IRV
- - 00 - (4 . . .
-1 A -1 A2 (A-w)2- w2
< cA Texp(-A2/202) + ¢ S(1 + A - w) “exp{- }dw,
- - o? 202
on using standard inequalities for the first probability, and (4.14) for fff’!ff’
the integrand, after noting A >1 and o < 1/2 . Standard integration
. . . -1 -A2/202 .
yields that the integral is O0(A ~ e ) . This proves the lemma.

Thus all that remains is to establish (4.14).

A straightforward application of the multivariate "reflection principle"

yields

P{ sup :U(x) > A} < 2k P{U(xz) > A} .
[xl ’x2] ’

By (4.8) varl(x,)) < % a2r72 , so that (4.14) now follows by standard

inequalities.

Without much extra work we can also prove a stronger version of

the preceding lemma. Under the conditions of the lemma, we have,

for x, < x <x

1 2 that

02(x) > a2 - 5a2/(4)2) .
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Consequently
Y A2 A2 .. .’.112

A

202(x) 202 2[02-502/4)2] 202

5a2/4 -

» = 0(1)
202[02-502/412]

Thus lemma 4.1 immediately yields

lemma 4.2 Under the conditions and notation of Lemma 4.1

4.15)  P{a} < o(x lexp(-22/252)) ,
where 02 = inf{o2(x): x, £x <x}

To state the next lemma define the event
B = {sup(WF(x): F(x) < a or F(x) > 1-a)> A}

Lemma 4.3 let aec(0,%), and Be(l,(da(l—a))-l). Then

(4.16) P{B} < O(exp(-28A2%)) .

Proof. This is a straightforward application of (1.4), on noting
that F(x) <a and F(x) > 1l-a both imply (202(x))-1 < 2[4 c(l-a)]—l .
We now turn to the ‘

Proof of Theorem 4.1. The idea of the proof is as follows. Divide

Ik into a large number of small cubes, and separate these cubes into
two groups. In the first group put those cubes over which wF has

small variance, and use Lemma 4.3 to show that the maximum of WF
over this group ic asymptotically unimportant. For the second group,
use Lerma 4.2 to bound the (distribution of the) maximum of Wp over
each cube, then count how many such cubes there are, and thus obtain
a final bound.

We now spell out the pfooé in detail, and note that the only

real difficulty lies in finding a convenient labelling system for
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the various cubes. We commence with cubes over which WF has large
variance (i.e., close to %.). Fix the dimension k , choose ae(},%),
A > 1, and sety= o2/(2kA2) . Let 1= (1,...,1), and let erk be
such that also xtyle Ik. Then the uniformity of the marginals of

F implies

(4.17)  F(x#vl) < F(x) + Yk = F(x) + a?/(23%) .

Now consider the lattice of points of the form Y(nl,...,nk),
where n, = 0,1,...,[y-1]. Then each of these points has a unique
expression as p + jyl , where pem and 1m is the set of Y(nl""’nk)

with min{ni: l1<1<k}=0 .. For each pem define, inductively,
3; = 3,0 = max{j: F(p+jyl) < a} ,
I - 3;(p) = max{j: F(p + jy%) - F(p + 3,_,YD) < o2/(222)
Furthemo;e. define
J = J(p) = min{i: F(p + jgyh > 1 -al

Note that (4.17} implies j,-j >1 for all 1 and p. Also, for

i-1
l.f.ji < J,

(4.18) 0 <a-a/(2X2) < F(p + j:lY-l-) <1l-a+a2/(222) <1.

Now set j*(p) = jJ( -1, and define
P)

I*(p)
S(p) = U {x=P+(Jl+k)Yl-.§x.<_P+(j]_+k+1)Y1‘}’
k=0

and
J(p)-1
St(p) = U {x: p + til:xip + 3471
i=1 -
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(Drawing a picture for k=2 will undoubtedly make the following argument
appear more natural.) From the definitions of S and S* it is clear
that

{x: a <F(x) <1-0}CS Us(p) & Usxp) .
PET pET

Thus, with A as at (4.5)

(4.18) P{sup(WF(x): o < F(x) < 1-a) > A}

j.P{sup(wF(x): xeS*(p) for some pew) > A}

J(p)-1
r I P{A(pti vly PHig, YL, MY
pen i=1

IA

J(P)"l -1
T o(z: A Texp[-22/20% (p+1 D)D)
pew i=1

Ia

the last inequality following from Lemma 4.2. ¥Now note that for all 1, p,
- 2 2
F(p + 3,,,v1) = F(p + 3,¥1) > a2/2)% ,

and set I = min{i: % - 102/2A2 < q} = min{i: % + 102/222 > 1 - a}. Then

it follows that the sequence

(4.19) {02(p+j1Yl): 1=1,...,J3(p)}
is dominated by the sequence

(4'20) {aO’aO’SO’aO'al’° .o ’aiyai'ai’ai'o L] ,aI’aI.aI’aI}

in which a, = L (ia2/212)2, where by "domination" we mean that the
elements of (4.20) may be rearranged so that, termwise, they dominate

corresponding elements of (4.19). Furthermore, there may also be more terms
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in (4.20) than in (4.19). As a consequence of this we have that

J(p)-1 _
I A lexp[eA2/202(p+jiyl)]
i=1

I a
<4z exp[sz/z(%-(iaz/ZAZ)z)]
i=1

1 .
<4 A Lexp[-222 (14+(1a2/22)2) ]
1=1

I a
I A exp[-2a"12/22]
i=1

-222
= fe 2

-222 © _ogh
V0"
0

Yay)

- ot 2V | .

k-1 k-1
Note that n has at most (2 + 2kA?/a?) . O(Az( )) points.. Combining

this fact, the sbove, (4.18) and Lemma 4.3 yields

P{sup wF(x) > A} s ]
k ——

I » ._ 7-4

i.P{sup(WF(x): o < F(x) <1l-a) > A} + P{sup(WF(x): F(x) < a

or F(x) > 1-5) > A} ‘o

A2

2(k-1)e—2A2 )

- 0() ) + o(e 28

2(k-1)e—2A2

= 0()x ) .

This completes the proof of Theorem 4.1.

Proof of Theorem 4.2 Our aim here will be to attempt to mimick the proof

of the two-dimensional case, Theorem 3.2, by comparing Wp to We » However,
€
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for k > 2 dimensions the mapping on which the comparison is based is
definable as a linear mapping only in an arbitrarily small neighbourhood
of the point x, of the theorem, and we shall not be able to say any-
thing concrete about the size of the neighbourhood, and thus, a fortiori,
anything non-asymptotic about the lower bound that we shall obtain.

The first part of the proof carefully sets up some geometrical
structures, and is totally non-probabilistic. Probability will enter only
vhen the groundwork is ready.

let G be the uniform distribution on Ik » and y* the point

(35)1/k . Then G(y*) = % and

(4.21) vy = %5 %) = (

i

%)(k-l)/k .

Note that ¥y is independent of 1. 1In order to compare F to G, it is
convenient to consider new coordinate sfs‘tems for F and G , obtained
by rotation and translation. To this end, let ¢ = <¢1....,¢k >, and
write Y interchangeably for the constant (4.21) and the constant vector

Yl . Define the unit vectors, with ||.|| now denoting the usual Euclidean norm,

vyo=wllell o w =l

and extend to two orthonormal bases V: = {Vl,...,Vk} and W: = {wl,...,wk}

for RF . Choose the origins of the new spaces to be x* and y*, res-

pectively. Then {f v(x) and w(y) are, respectively, the representations

of x and y 1in the new éoordinate systems, we have

Vi) = 0, v (x) =y Gexk)/ [[u|

wiyt) =0, w4y = "Gy =y oy /vl -




" G

The d.f.{s F and G can be transferred in a natural fashion
to Y ad W space, respectively. Let’ F and & be the corresponding

functions, defined by
F(v(x)) = F(x), cw(y)) = G(y) .

(Note that F and G are not necessarily d.f.'s on V and W space.)

Now define maps “v and “w from Y and W space, respectively, to the

original domains of F and Fe’ by
x (v(x)) = x-x¥, o (u(y)) = y-y* .

Thus, #' and 1  transform from the coordinate systems of the V and
W spaces to systems cente.ed at x* and .y* but oriented like the
original cartesian system.

We shall need to impose on the V and W spaces concepts of

ordering inherited from the original spaces. To this end, write
i v(l) << v(z) K== ﬂiv(v(l)) i ﬂiv(v(Z)) ’ i=1. e e ’k ’

(&)}

w << w

@ n ey < ni“’(w(")), 1=1,...,k,

and define vcl) 2 v(z) and w(l) 2 w(z) accordingly.
; This completes the necessary geometrical groundwork. We now build
R the mapping upon which the comparison between F and G will be based.

Let

.. H ” g/.. N p,max{wi:i=1,...,k}

oIl el ® 7 Tada{y rieL kD B =op + 2a.

Define the mapping m = (ml,...,mk) from a neighbourhood of zero in W
space to a neighbourhood of zero in V space, via its coordinate mappings,

by firstl]ly setting




(4.22) mi(w) = Bwi, 1=2,...,k °
and then choosing ml(w) such that
(4.23) F(m(w)) = G(w) .

We need to check that my is, in fact,well defined. For w, = 0,

i

i=2,...,k, and general w G(w) 1is clearly strictly increasing as

1’
a function of wl. Furthermore, since the unit vector Vl

space has, as a vector in the original space, strictly positive coordinates,

of the V

it follows that F(vl,O,...,O) is strictly increasing as a function of

vy - Since F(0) = G(0) = %, it follows that m is well defined for w

of the form (wl,O,...,O). The implicit function theorem now defines
m uniquely for sufficiently small neighbourhoods.
Having defined our mapping, let us consider some of its éroperties.

Note that for small neighbourhoods of the origin
Gw) =% + ||y|lwy + o(|]w]]) ,
B = %+ Lol fvy + oC| v D)

Combining these facts with (4.22), (4.23), and the definition of g

we obtain that for small w
(4.24) ml(w) = pwy *+ o(||w|]) .

Consequently, for small wi,

.25 oD - 6D - vl - ee?l] < W)
Now let q be the linear map approximating m; i.e., set

(6.26) ql(W) " v, qi(w) - Bwy, 1%2,...,k
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Then by (4.25), for emall u,

(4.27) I[aeh)-ae®] - [aaH-awD Il < [[w'=2 .
Finally, note that as a consequence of (4.28) we also have
“.2) T @D e - @WH-ae2)) < |lvt=l

This completes our listing of properties of m and its linear
approximation. We can now turn to the final part of the proof, the
comparison of WF and WG s which we commence by comparing F and G.

Firstly, let N be a smail enough neighbourhood of zero in W
space 8o that (4.24) - (4.28) are true fqr wieN. Take wl, wzeN

with wlf\‘w2 eN . Suppose

1 .2 P

(4.29) AW =W for p=lor 2 ..
Then
(4.30) Fah)amw?)) = Flm@wh)) » Flmw?))

Ewd) A G(w)

é(wp)

1,.2

(;(w w)

3

Now consider the case w™ = wl » wz » WP for either p =1 or 2. We

shall obtain (4.30) also for this case, but with inequality replacing the

equality. For each coordinate j3=1,...,k, w3 = wl 2 w2 implies that

ﬂ:(wl) - ﬂ;(w%- 0 or ﬂ:(wz) - ng(w3) =0,

Fix j, and let p: = p(j) = 1 or 2 be such that

(4.31) P - n‘j’(w3) = 0.
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3 <~',p(l)

Thus w = P p(k),

. . Rewrite q as -

q(w) = 8w + (p-B)le1 s

and apply this to (4.31) with w = wp-w3 to obtain, via the linearity

of W

j 1

(4.32) n;’(q(wl’-w3)) - 200} - wi) n';(vl).

Now note, from the definition of wl and since w" >> w3 ’

3 k 3 3
wll’ - - iflﬂvi’(wg'wl)/"l: > WP -k

Furthermore, & follows from the definition.of Vl and o that

“w

jvl)_{&a.

Substituting the above two inequalities into (4.32) yields
3 3
Ty Q@eP—)) < 2| [P
Combining this with (4.28) thus yields

G339 @ - n@)) < -[lWP=3|l <o .

However, what we have just shown is that for every j = 1,...,k
there is a p = p(J) satisfying (4.33). Consequently, for every wl,w
with wl N wz € N, it follows that

n(w’ 5 WD) >> (aw) 2 mwd)
from which it follows that

(6.30)  Faw') * aw?) < P 2 w2)

zeN




Combining this with (4.30) we find that the above inequality holds for o
all wl, WZSN-, where N'c N is a neighbourhood of zero such that wl,w:z eN' °
implies wl 2 w2¢;N, and, consequently, that (4.34) holds. 3,?‘ ﬂ
To obtain the final comparison between F and G, we need to ;:" .;
o
return to the original coordinate system. However, this is now easy, ]
for since the "minimum"” relationship in (4.34) is really that of the
original coordinate system it trivially follows that via m we have con- '“; _f
e
structed a map, say m%, from some neighbourhood N* of y* to a neigh- ?
bourhood mn*(N*) of x* satisfying :
-
. ]
F(m*(Y)) = G(Y) 3 yeN* , R 4
1 2 1 2. 1.2
Fim*(y ) A m*(y")) = Gy ay"), ysy eN*,.
Slepian's inequality now yields
(4.35)  P{sup Wi(x) > A} > P{sup Wo(x) > A}
k m(N*)
1
2 Plsup W (y) > A}
N*
> P{swp W (y) > Al,
B
6 - Y
o

1k_s 19 %51k ¢ n* .

where § is chosen small enough so that Bt = Lo
(Note that § depends on N*, and so on F.) Thus, to complete the proof,
we need only find a lower bound for the last probability.

Take ¢ = %(Zé)k, and consider the d.f. F of Section 2 on Ae . RN

Map ye:B‘S to zeAe according to the coordinate mappings

Zi = Zi(y) = ;5_ + (Zﬁ)k-l[yi-(li)l/k] . i —. . .‘-"4
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Then it is straightforward to check that for yeB6 IR
K .
(4.36) F_(z(y)) = G(y) . S
Furthermore, if yl,y2 E:B6 then yl A yZCBG, and N -
1. 2 1 2 IR
(4.37) z(y A y) =z(y) 2 2(y") . IR
Consequently, i'f;Qli
-8
P{sup W.(y) > A} = P{supF (z) > Al. l:fﬂ}fﬁ
€ S
B6 Ae AR

e ey

But this last probability is known, and is bounded from below in

- -232
sz(k l)e 2 .

Theorem 2.2 by Combining this with (4.36) completes

the proof of the theorem.




5. AN UPPER-LOWER CLASS THEOREM ®

We now return to the one-sided KS sgtatistic T(k)

n of the intro-

duction, and study the way it grows with 'n. In a fundamental paper

treating the one-dimensional case Chung (1949) proved the following result

for a sequence A(n) t = :

.1 BT > An) infinitely often} = 0(1) | 'y

if
2 -
(5.2) I lf‘lenz(“) <o (=),
n

Kiefer (1961) obtained a weaker version of .Chung's result for the multi-
variate case, and proved the following LIL for every k and continuous
F: | o
(x) (k) SRR
(5.3) . Ta Ta RN,
* 1 = P{lim sup L= 1} = P{lim inf — - -1}. SR
n -+ (% log logn) n + e« (%log log n) el
o
Kiefer's proof of (5.3) was based on inequality (1.3), which is not fine .
enough to pick up the higher iterated logarithm terms that (5.2) yields. a
Having improved on Kiefer's inequality in the previous sections (at least A

insofar as the limit process W_ 18 concerned) we can now complete the

F
task Kiefer began and obtain a multi-dimensional analogue of (5.1).

Unlike Chung's and Kiefer's basic inequalities for P{Tn > A}, we

have only inequalities for P{sup WF(x) > A}, and so we shall need to

X
proceed via an embeading theorem. To this end, for continuous F on Ik

define the Kiefer process as the C[O.l]k-valued, real parameter process

Kt’ t > 0, satisfying:

P A L
‘-'l...l..-'




(5.4) p{KleA} = P{WFeA}. .

o . . ' iy I/. )
i (5.5)  PUK;KRDeAl = PIK,_ eA} = P{/t-s K;ehl, fort > s,
(5.6) (k,-K)) and K are independent for allt >s > u .

Here A 1s any Borel subset of C[O,l]k » with topology generated
by the sup norm ||k|| = sup{ | k(t)|: teI*}. Then Theorem 7.1 of Dudley

and Philipp (1983) implies the following embedding theorem, which is a

strengthening of an earlier result of Kiefer (1972) .

Theorem 5.1 (Dudley-Phillip) Let Xl,X s+e» be an Infinite sequence of

i;i.d.r.v.'s, defined on an infinite produc:t space (Rw, B”, Pw)

DN e S An o PLAR SRR *
e e Lo . e e

. © «© (-
with common d.f. F. Let (Q, I, Pr) be the product of (R, B ,P ) and a

copy of the unit interval with lebesque méasure. Let Fn be the empirical

d.f. based on xl,...,xn . Then, for every 6 > 0 there exists a Kiefer

process Kt’ t >0, defined on Q, such that

(5.7) supln[Fn(x) - F(»] - Kn(x)l < O(nsﬁ(log n)-e)
x

with Pr probability one.

As an immediate consequence of this reéult, along with a LIL for
sums of Banach space random variables, it is now easy to obtain Kiefer's
LIL, (5.3). (c.f. Kuelbs and Philipp (1980) and Goodman, Kuelbs and
Zimn (1981), esp. Theorem 6.1). Indeed, the Banach space results
yield much more than (5.3), for they also identify the cluster points of
F in C[O.l]k in terms of the unit ball of a certain H'ilbert space. It

is not possible, however, to follow this path to obtain a multivariate




. g

—p

T

Bl et

function for'{Kt, t >0} 4if

version of Chung's upper-lower class theorem,. the problem being that no
appropriate upper-lower class theorem is known for Kt . (Note that
whereas Kuelbs (1975) does have a result of this type for Kt’ it is
not applicable here, since it gives results not for the growth of "KJI
but the growth of[thll*, where ll.ll* is another unspecified norm
(albeit equivalent to the sup norm).) Consequently we shall have to revert
to an almost basic principles analysis to obtain a generalization of
Chung's theorem.

To state our result, we shall say a non-negative, non~decreasing,

continuous function Y(t) defined for large values of t is a lower

(5.8) r{llxnll >/n ¥(n) for an unbounded set of n's} = 1,

and an upper function for'{Kt: t 3_0} if
(5.9) ?{Ithll > t%W(t) for only a bounded set of t's} = 1.

Since the definition of Kt is dependent on F, whether or not any given
¥ 1is a 1lower or upper function depends on F as well as y. Thus we
write Vel(f) and VelU(F), respectively, to denote this dependency.

Note that (5.8) implies the weaker condition,

5

P{IIKt|| > t“Y(t) for an unbounded set of t's} =1

which is usually taken as the definition of a lower function. However;
the stronger result (5.8) is what is needed to apply Theorem (5.1),
and since our proof will be strong enough to prove (5.8) we use it to

define the notion of lower class. We can now state

.
& A eemtnw
» .,-.. -
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EI Theorem 5.2 Llet F be continuous on Ik with uniform marginals. For ot

¢ as_above, set

TE . o 2k 2
200 1w = f L AV

1f Ik(¢) < », then yelU(F). Furthermore, if F satisfies the conditions

of Theorem 4.2, and Ik(w) = o , then Yel(F).

A simple argument, dating back at least to Erdos (1942) and spelled -8
out in detail in Sirao (1959), shows that there is no loss of generality

in Theorem 5.2 in essuming that for large t

(5.11) (xlog log t)!5 < 9(t) < (log log t);’ . L
Furthermore, a straightforward application of the Abel-Dini theoren =asily i;:JY ?

yields the following corollary. -8 -

Corollary 5.1 Let p > 3 be integral, and define

"’k,s(t)’ = 2";5 [log2t+(k+1)log3t+log4t+. . .+(1+6)1ogp+1(t)] & .

Then 6>0 implies I (¥ ) <> and &6 <O implies I (y, . ) =» ,
— AEp22e8 ¥, =2 2op-ces L %.,s

so that Y el(F) if 6 >0 and Y sEL(F) 1f 6 <0 end F satisfies
H ]

the conditions of Theorem 4.2.

As a further consequence of (5.11) and Theorem 5.1 we can also
derive tie following corollary of Theorem 5.2, which generalises Chung's

uni-variate test:




8
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Corollary 5.2 For all F,

P @

Pl > ym) L0} =0 4£ 15y

For F satisfying the conditions of Theorem 4.2

2k o2
P{Tn(k) > y(n) i.0.} =1 1f & !L;SEIE 2y (n) w
n

This result, of course, implies Kiefer's LIL, (5.3). All that now

remains is the

Proof of Theorem 5.2. We consider the convergent casé first, i.e., Ik(w) <o,

Define a sequence tn satisfying
(5.12)  t_..= t_(L+y 2(t))
‘ ' ntl n n'’

vhere t, > 3 is sufficiently large so that (5.11) holds for t > ts

and so lim t = o Set I = [tn’tn+1] and

K

-

A =({sup —g-———'> 1) .
n el toy(t)
Then, applying the Banach space version of Lévy's inequality, we have

P(A} < Plsup|[K || > toy(t )
tsIn

3
< 2p(][x > t 2yt )}
LRI

- 2P{?;§1||Ktn+1|| > (tn/tn+1)%w(tn)}'

Now apply the scaling law (5.5), and Theorem 4.1 to obtain

Lo e i ol 2 A A
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2(k-1)

JOR L CNCNI L TCH R L S R TN

< C[‘P(tn) ]2 (k-.l)exp[—ﬂ’2 (tn) ],

since t <t . and (t /t )= AT NTI 2 102 ) 2 i for

ntl

large enough n.

To complete the proof it is clearly sufficient to show ?P{An}

1
converges. But
L t - _na2 t
TP{AY<cz ™ [y 2D 2V )0 g
n - n g(t -t )
n=1 nt _; n n-l

t N t v2(t_ )
i Cs fn [w(tn)JZ(k l)e wZ(tn) nst n-1

nt . n-1

ds

<cf ka(s)e—zwz(s)ds
0

= Ik(ll') s

the last inequality from the definition of tk and the ultimate mono-

2k, -2¥2(s) KN
tonicity of V¥° (8)e . By assumption Ik(w) < ® . and so the proof
of the convergent part of the theorem is complete.

Now assume Ik(lb) =® , Let a = (log n)z,

n -
B = ma, , and t_ =[Bn], n > 2, Also set
L i n ) :
a+ce /e ) R
ena-l-i- nn+;li >0, n>2, .'
(1-t /t_..) SN
n ntl REYAR

.
ot o' d

L]
. ' . ,' o 0
LA VRIS S 2 2N
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Following Chung's (1949) argument, set

' %
H = {HKt Il < tn‘l’(tn)},

P n
3 | \y
_ By = IR =R > Qe e e 0 %0ce )Y
i nt+l n
Then, if both Hn and Hn,n+1 occur, we have
% L
H, 112 Qe )t p-t )P0Ce 40 = e )
nt+l
% L 3 L
- tn+lw(tn+1){(l—tn/tn+l) (l+en) - tnw(tn) /[tn+1¢(tn+1)]}
5 .
2 tanV(tyy) -

That is, Hn'ﬂn,n+l=> Hn+1 . Thus, noting from (5.6) that Hn,n-i-l

and H are independent for m < n, it follows that

n
}<P{®" H .H
- m

n
p{mn}.c{n
m
=2

=2 n,n+l

That is

n+l n
P{n H}<P{nH]} . (1-P{H
w2 = 1n=-2m n

,n+l H

n

= P{nz}- m (1-P{H

=2 m,m-*-l})

Clearly, th £ ]
early, then, if we can ghow nEZP{Hn.n+1}

theorem. Applying Theorem 4.2 and (5.5) we have

= w, we will have proven the




)]2(k-l)

(5.13) '1>{un’n 1tz c(1+en)2(k'1)[w(tn+l exia{—zwz(tn +1) (1+en)2} .

Consider the exponent, and note that

+ O(llﬁndh ) .

+1

Consequently

2 ) -
(1+€n) =1+ 3/an+1 + O(un

so that, by (5.11),

2 2 2 .
] (tn+1)(1+€n) < (tn+1) + (log log B_,,) 4’“n+1

n+l

log g log2m

A 4 log? (n+l)

= wz(tn+1) +

for large enough n. Substituting into (5.13) and setting Yn“(un+l)1+1/n
yields
© - 22
1:1’{14n n+l} >cz [wt )]2(k De 2v (tn)
n ' n=3 n
Y _ou2 o
e f ue) P 1) 297 () oy ds
n g n n
. n
o n
ntl . n 42k -2¢92(s") a
| >cz | [v(s )] se . - n ds
. n -
| Ll b .(Bn) ()
2k, . -2y2
since Yy (t)e V(e is eventually decreasing in t. A change of variables

leads to
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)n+1 )
n+l 2k -2¥2(t)
e .}>cia [ Ly 1™ dt,
,amMtl” — a4 n (u- )n t
n
where
“n
° (5014) a = B
. o av?(8) (v ma)

If we can now show that a is bounded away from zero for large enough

n , we shall have 21’{&n } > CIkW) = o, and the proof will be complete,

on+l

Firstly, note that by (5.11)

n n
(5.15) '02(8 ) <log log (7 logzm) = log ( I log (logzm))
n - m=2 =2

< log ((n-2)2log log n)

<2 log n.

Furthermore

(5.16) ‘ @ /(Y -2) >a /(e  ~a) = .(..Les__fﬁ"l_)i_l-l
' n’*'n n n’ “ntl n [(logn)2 ]

5 %[log o+l _ ]-1
logn °

Substituting (5.15) and (5.16) into (5.14) yields

- a 2k [nQlog(n + 1)~ log n)] -1
=% [n log (1+ 1/n)]-1
> 1/8,

which completes the proof of the theoreﬁ.
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